Basin-Scale Mineral and Fluid Processes at a Platform Margin, Lower Carboniferous, UK

A Thesis submitted to the University of Manchester for the degree of Doctor of Philosophy (PhD) in the Faculty of Science and Engineering

Catherine J Breislin

School of Earth and Environmental Sciences

2018
Basin-Scale Mineral and Fluid Processes at a Platform Margin, Lower Carboniferous, UK

Catherine Jane Breislin, Degree of Doctor of Philosophy (PhD), University of Manchester, 2018

Late diagenetic, fault-controlled dolomitisation has received much interest as it is an important host for MVT-mineralisation and hydrocarbons, and an excellent proxy for fluid flow and reaction in carbonate systems. The source of fluids of sufficient volume and the correct chemistry to explain the volume of dolostone is much debated. Recent work has shown how seawater convection along deep-seated crustal lineaments is focused in zones of structural complexity. Since dolomitisation is favoured where there is a precursor high magnesium calcite or dolostone, it is possible that such a process is a critical precursor to the formation of these late diagenetic dolostones from evolved brines during extension and transpression. In the Pennine Basin and North Wales, UK, late diagenetic fault/fracture controlled dolostones developed on the margins of Mississippian carbonate platforms that grew on the rotated footwalls of normal faults and a basement of Lower Palaeozoic metasediments. Conceptual models for their formation focus on expulsion of fluids from Serphukovian-Bashkirian sediments within adjacent hanging wall basins, by compactional dewatering or rupture of overpressured compartments and seismic pumping. This project aims to determine the source, composition and drive mechanism of fluids that formed a large (~60km2), non-stratabound dolostone body exposed within the Viséan sediments on the southern margin of the Derbyshire Platform, through a combined regional sedimentological, diagenetic and structural framework using multiscale, interdisciplinary techniques. Techniques include field observation, transmitted light and CL analysis, bulk major and trace element analysis including rare earth elements, stable isotope (oxygen/carbon), and strontium isotope analysis. The Derbyshire Platform underwent burial, several episodes of fluid-flow, and multiple phases of diagenetic overprinting. The products of fluid circulation in this area consist of dolomitisation and Mississippi Valley-type (MVT) mineralisation, affecting the carbonates of the Lower Carboniferous (Viséan) succession.

Dolomitisation on the Derbyshire Platform is aligned to deep-seated basement faults and extrusive, intraformational volcanic beds, and five dolostone phases have been identified. These are present as matrix replacive and cement phases that are spatially and temporally related to deep seated structural lineaments. It is proposed that stratabound, early post-rift dolomitisation resulted from the geothermal convection of a mixed meteoric-seawater that interacted with the Viséan extrusive and intrusive volcanics on the Derbyshire Platform, providing additional magnesium for dolomitisation. This previously undescribed model of dolomitisation is key to explaining the anomalously large
quantity of dolomitisation observed on the Derbyshire Platform and has implications to other carbonate platforms where dolomitisation is interpreted as fault-controlled.

Subsequent phases of dolomitisation are fault-controlled, with each phase becoming increasingly confined to fractures. Timing of dolomitisation is interpreted to be a Carboniferous event, with later mineralisation also being of late Carboniferous in age, with basin de-watering on to the platform via faults/fracture systems and the development of pockets of overpressuring. Illite-smectite clay transformations within Viséan basinal sediments provided the necessary magnesium required within select fault/fracture systems. Consequently, burial calcite cements and MVT mineralisation was precipitated within fractures and dissolution-enhanced secondary porosity, with fluids derived from the overlying Namurian succession which also acted as the seal.

This project provides a step-change in our ability to predict the location of late diagenetic fault/fracture controlled dolomitisation in rift basins by demonstrating the importance of dolomitisation by mixed meteoric-seawater on platform margins to the localisation of late diagenetic dolostone bodies. It also highlights the complex interplay between basin kinematics, host rock permeability and timing of fluid supply through episodic fault reactivation, connecting platforms to basin compartments, which ultimately controlled the positioning of dolostone geobodies on platform margins. This has implications to the exploration of both minerals and hydrocarbon within dolostone hosts, and will inform studies of fluid transfer and reaction in carbonate systems.
Declaration

The University of Manchester
PhD by published work Candidate Declaration

Candidate Name: Catherine Jane Breislin

Faculty: Science and Engineering

Thesis Title: Basin-Scale Mineral and Fluid Processes at a Platform Margin, Lower Carboniferous, UK

I declare that no portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.
COPYRIGHT STATEMENT

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other intellectual property (the “Intellectual Property”) and any reproductions of copyright works in the thesis, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/Doculnfo.aspx?DocID=487), in any relevant Thesis restriction declarations deposited in the University Library, The University Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and in the University’s policy on Presentation of Theses.
Acknowledgements

It would not have been possible to complete this doctoral thesis without the support and kindness of the people around me. I give great thanks to those who have influenced me during my PhD degree, some of whom are thanked below and in no particular order.

This research would have not been possible without the support, patience and enthusiasm of my principal supervisor Dr Cathy Hollis. The advice and support of my secondary supervisors, Jim Marshall, Vanessa Banks and Jim Riding, also provided invaluable throughout the project.

I would like to acknowledge the financial support of NERC, the British Geological Survey and Shell International, Rijswijk which has made this project possible. The Shell Carbonate Research and Solutions team in Rijswijk are thanked for backing the project financially and I would like to thank the group for many interesting and helpful discussions. The Derbyshire National Park Trust, Natural England, Peak District Mines Historical Society and the staff at Longcliffe Calcium Carbonates are thanked for allowing the extensive field work and sampling to take place.

The British Geological Survey (BGS) and in particular Ian Miller are thanked for providing training and access to their facilities to carry out strontium isotopic analysis. I also thank Steve Crowley, Liverpool University for stable isotope analysis and invaluable discussion into hydrothermal dolomitization and mineralization within the UK Carboniferous. The technicians within the University of Manchester are thanked for advice, training and sample analysis. These include Cath Davies, Paul Lythgoe, John Waters and Jon Fellowes.

Amongst my fellow postgraduates I would like to thank Sarah Newport for braving the weather in the field. I thank both Sarah and Leo Newport for having encouraged numerous discussions on the Carboniferous and a welcoming academic and social environment. Cathy’s carbonates group are thanked for sharing their love of carbonate research and being great fun during conferences and field trips. The guys in office 1.76, Alex and Riki are thanked for providing endless distractions from work and for overlooking the pile of rocks that slowly overtook the office.

Finally I would like to thank my family for personal support throughout. Above all, Rhys is thanked for his unequivocal support, great patience and occasional taxi rides, my gratitude for which is unbounded.