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Contribution of Glaciers and Ice Sheets to Sea Level Change
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Cumulative ice mass loss from glacier and ice sheets (in sea level equivalent) is
1.0 to 1.4 mm yr' for 1993-2009 and 1.2 to 2.2 mm yr" for 2005-2009.
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Imperative that we get ice sheet and glacier mass balance right

Source 1993-2010
Observed contributions to global mean sea level (GMSL) rise
Thermal expansion 1.1 [0.8 to 1.4]
Glaciers except in Greenland and Antarctica® 0.76 [0.39 t0 1.13]
Glaciers in Greenland? 0.10[0.07 to 0.13]*
Greenland ice sheet 0.33 [0.25 to 0.41]
Antarctic ice sheet 0.27 [0.16 to 0.38]
Land water storage 0.38 [0.26 to 0.49]
Total of contributions 2.8[2.3 to 3.4]
Observed GMSL rise 3.2 [2.8 to 3.6]
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Ice grounded below sea level vulnerable to rapid retreat
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Lithospheric architecture and tectonics matter
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Bingham, R. G. et al. Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts.
Nature 487, 468-471 (2012).



Scientific challenges

Lithospheric architecture of Antarctic and Arctic continents
Global GIA solutions for past and present ice sheets

Long-term geodynamic evolution of polar gateways and
mantle processes

Basal heat flux and ice sheet — groundwater interactions

Variability in shallow basal conditions and ice dynamics
between Antarctic and Arctic ice sheets / masses

Holocene histories as ice-sheet model constraints



Special thanks to Pippa Whitehouse

Need for deployments of GPS units in Antarctica

Lack of confidence in models of
Antarctic glacial isostatic adjustment
(GIA) still dominates the uncertainty
associated with estimates of ice sheet
mass change from GRACE

between the two most recent models

* Easily measurable with GPS
* Note vast gaps in East Antarctica (circled)

* Same rock outcrops provide opportunity for
dating of ice sheet retreat and co-location

-180°
m mmiyr (or near-location) with broadband
seismometers (see following page)
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Special thanks to Pippa Whitehouse

Need for deployments of seismic units in Antarctica

We currently only have a very coarse view
of Earth structure

* necessary for predicting the solid Earth
response to ice load changes

&= Dump of entire IRIS archive
- significant data gaps are circled




Special thanks to Pippa Whitehouse

Need for detailed GPS/seismic deployments in Antarctica

e Characterisation of much of Antarctica’s
crustal/lithospheric structure is lacking

* Tectonically complex regions with little data

 Antarctic Peninsula 20t Century volcanism
largely unexplored

Why do we need to understand the detailed
Earth structure?

3d structure and upper mantle viscosity have
1st-order controls on GIA

Example: Current rapid ice loss in the Antarctic
Peninsula probes the upper mantle in a very
well-observed way, but we only have sparse
measurements [Nield et al., EPSL, accepted]
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* compare the complex pattern of predicted
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GIA and global water transport also impact geo-centre velocities,
—> But large discrepancies between models and measurements
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Figure 2 | Unfiltered GIA geoid height trends. a, Estimated in this study. b, Predicted by ICE-5G/1J05/VM2 model.

Wu, X. and 8 others, 2010. Simultaneous estimation of global present-day water transport and
glacial isostatic adjustment, Nature Geoscience, doi: 10.1038/NGEO938.



Special thanks to Alex Brisbourne

Existing BAS Airborne Geophysics Capability

Twin Otter with airborne geophysics certification:

High-precision GPS for positioning

Magnetometer and fluxgate magnetometer

Radar and laser altimeters

Ice penetrating radar (5 km penetration; 8 m resolution)
Short-wave/thermal/near-visible IR hyperspectral imaging
Gravimeter

DSLR/HD video

- Powerful but under-used facility

— Should be used more widely incl. non-cryosphere applications (?)



Existing UK Ground-based Geophysics Capability

 NERC GEF / SeisUK (High-freq. seismics, GPR, DGPSs)

e \Various university instrument pools (especially multi-channel
seismics, GPR, DGPSs)

* BAS instrument pool (96-channel seismic incl. shallow drill, GPR,
low-res high-power and phase-sensitive radars, DGPSs)

At BAS and selected universities:

» Static hot water drilling and ice coring facilities

* Selected borehole instrumentation

UK at forefront of autonomous probe developments
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Special thanks to Pippa Whitehouse

Need for geothermal heat flux measurements

Standard deviation of three Antarctic
geothermal heat flux distributions
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Van Liefferinge and Pattyn, Climate of the Past (2013)

Large uncertainties associated with
geothermal heat flux (see figure)

Very few direct observations

Why important?

Provides a boundary condition for
ice sheet dynamics

And can be used to infer
lithosphere/upper mantle
rheological properties



Boulton, G. S., Hagdorn, M., Maillot, P. B. & Zatsepin, S. Drainage beneath ice sheets: groundwater—channel
coupling, and the origin of esker systems from former ice sheets. Quaternary Science Reviews 28, 621-638 (2009).

Channel  Groundwater Interfluve  Channel

8000 9000 10000 11000 12000 13000 14000 15000 16000
Distance (metres)

Christoffersen, P., Bougamont, M., Carter, S. P., Fricker, H. A. & Tulaczyk, S. Significant groundwater contribution to
Antarctic ice streams hydrologic budget. Geophysical Research Letters, 2014GL059250 (2014).



Need for detailed characterisation, Example 1:
(Shallow) ice substrates exert first-order control on ice flow
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Vaughan, D. G., A. M. Smith, P. C. Nath, and E. L. Meur (2003), Acoustic impedance and
basal shear stress beneath four Antarctic ice streams, Ann Glaciol., 36, 225-232.



Need for detailed characterisation, Example 2:
Anisotropic ice substrates exerts first-order control on ice flow

Martin, C., G. H. Gudmundsson, H. D.
Pritchard, and O. Gagliardini (2009), On
the effects of anisotropic rheology on ice
flow, internal structure, and the age-depth
relationship at ice divides, J. Geophys.
Res., 114, F04001.
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Need for detailed characterisation, Example 3:
Marine ice critically stabilises Antarctic ice shelves
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Kulessa, B., D. Jansen, A. J. Luckman, E. C. King, and P. R. Sammonds. Marine ice stabilises a
large Antarctic ice shelf. Nature Communications, in press.



Need for detailed characterisation, Example 4:
Characterisation of Holocene ice sheet histories
as recorded by sedimentary legacies
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Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the

past five million years. Nature 458, 329-332 (2009).
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mounted in a tail boom on the DC-3T and in a deployable towed "bird" on the DHC-5.
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Requirements to compete with international
state of science and technology

 Enhanced range and coverage
— Longer-range aircraft, large-scale UAV developments

* Detailed surveying of key inaccessible areas (e.g. outlet glaciers)
— Helicopter deployments, small-scale UAV developments

e Better data through improved instrumentation, e.g.
— Higher resolution airborne gravity systems
— Airborne low-frequency radar, for both fixed-wing and helicopter
— Airborne accumulation radar for sea-ice and ice sheets.
— Airborne swath imaging radar focusing both along-track and cross-track
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Cryosphere scientists are traditionally ‘ slow’ at adapting geophysical techniques
from other areas of earth sciences / practice
—> considerable scope for future developments and applications, especially as

regards active-source and passive seismic techniques



Special thanks to Alex Brisbourne

UK Ground-based Geophysics Capability: Requirements

e Characterisation of electrical conductivity structure
- Magnetotellurics (GEF?)

* Rapid flexible data collection over large areas

—2 Vibrator truck with p- and s-wave capability + streamers

e Detailed characterisation of ice (anisotropy) and substrate
- High-frequency passive seismic stations

— 2.5-3km depth capability, transportable hot-water drill
— Portable downhole instrument strings

e Sediment characterisation (exposed, subglacial, grounding lines)
— Dedicated airborne / UAV radar sounder for exposed sediments

— Autonomous probes for subglacial sub- ice shelf deployment
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Welcome to SCAR

Welcome to the Home Page of the Scientific Committee on Antarctic Research (SCAR), an inter-disciplinary committee of the International Council for Science (ICSU) . SCAR is
charged with initiating, developing and coordinating high quality international scientific research in the Antarctic region, and on the role of the Antarctic region in the Earth system.
The scientific business of SCAR is conducted by its Standing Scientific Groups which represent the scientific disciplines active in Antarctic research and report to SCAR.

In addition to carrying out its primary scientific role, SCAR also provides objective and independent scientific advice to the Antarctic Treaty Consultative Meetings and other
organizations on issues of science and conservation affecting the management of Antarctica and the Southern Ocean. In that role, SCAR has made numerous recommendations on a
variety of matters, most of which have been incorporated into Antarctic Treaty instruments. Foremost amongst these have been the advice provided for the many international
agreements which provide protection for the ecology and environment of the Antarctic.

SCAR meets every two years to conduct its administrative business at the SCAR Delegates Meeting. At these meetings the members of SCAR, through their appointed Delegates, are
responsible for approving SCAR finances, and formulating SCAR policy and strategy. They also elect an Executive Cornmittee from among themselves which is responsible for the
day-to-day administration of SCAR through its Secretariat at the Scott Polar Research Institute in Cambridge, England. The Executive Committee comprises the President,
Past-President, four Vice-Presidents and the SCAR Executive Director. The SCAR Secretariat is staffed by the Executive Director, Executive Officer and an Administrative Assistant.

SCAR also holds, prior to the Delegates Meeting, a major Open Science Conference to draw attention to Antarctic issues, along with meetings of the Standing Scientific Groups that
are designed to finalise the Science Programmes for eventual approval by the Delegates.

Subscribe to SCAR news & (or follow the link to amend your existing subscription).

Highlights:

2014 SCAR and COMNAP Antarctic Research Fellowships and CCAMLR Scientific Scholarships

esrﬁg Applications now open for the 2014 SCAR and COMMAP Fellowships, and CCAMLR Scholarships.

The deadline for SCAR and COMMAP Fellowships is 4 June 2014.

Establishment of a SCAR-type organisation for Arctic research incl. solid earth community

Enhanced European linkages and industry partnerships could be transformative

for Arctic research



Technological / organisational needs: Summary

Permanent GPS and seismic arrays in Antarctica and Arctic

UK airborne geophysics capability for sub-ice characterisation

UAV technology

New on-ground geophysical technology

Transportable hot-water drill and borehole instrumentation

Transfer of state-of-the-science geophysical techniques

Integration across scientific communities and industry
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